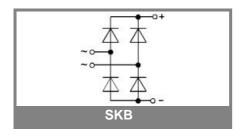


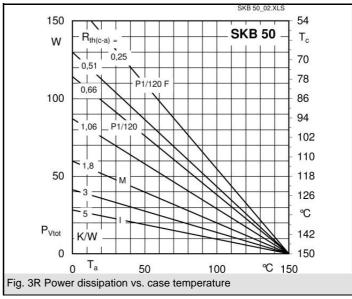
V_{RSM}, V_{RRM}	V_{VRMS}	I _D = 50 A (T _c = 64 °C)	C _{max}	R _{min}
V	V	Types	μF	Ω
200	60	SKB 50/02 A3		0,1
400	125	SKB 50/04 A3		0,3
800	250	SKB 50/08 A3		0,4
1200	380	SKB 50/12 A3		0,6
1400	440	SKB 50/14 A3		0,7
1600	500	SKB 50/16 A3		0,8
1600	500	SKB 50/16 A3		Ī

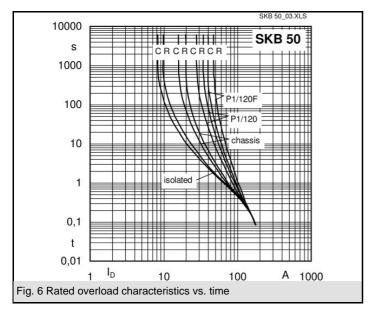
Power Bridge Rectifiers

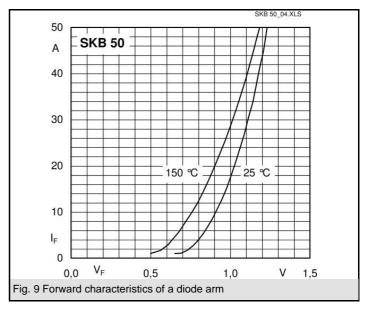
SKB 50

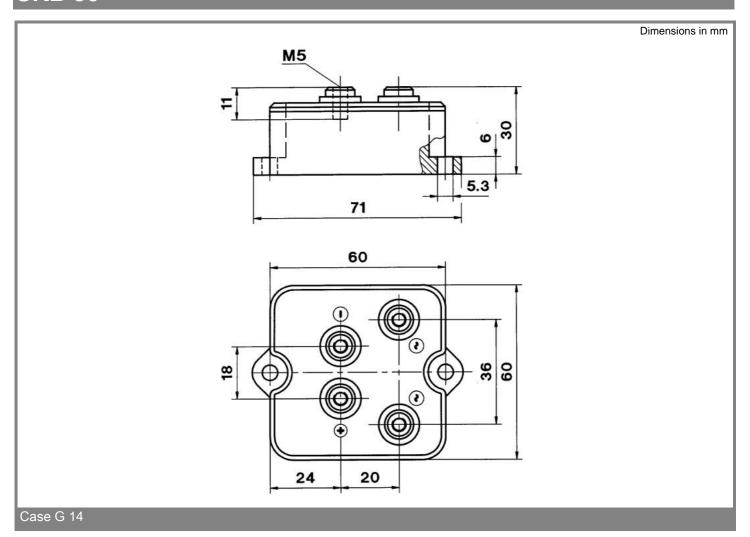

Features

- Isolated metal case with screw terminals
- Blocking voltage to 1600 V
- High surge current
- · Easy chassis mounting


Typical Applications


- Single phase rectifiers for power supplies
- Input rectifiers for variable frequency drives
- Rectifiers for DC motor field supplies
- · Battery charger rectifiers
- Recommended snubber network: RC: 0.1 μ F, 50 Ω (P $_{R}$ = 1 W)
- Freely suspended or mounted on an insulator
- 2) Mounted on a painted metal sheet of min.250 x 250 x 1 mm


Symbol	Conditions	Values	Units
I _D	T _a = 45 °C, isolated ¹⁾	10	Α
5	T _a = 45 °C, chassis ²⁾	20	Α
I _{DCL}	T _a = 45 °C, isolated ¹⁾	8	Α
	T _a = 45 °C, chassis ²⁾	16	Α
	T _a = 35 °C, P1A/120 F	40	Α
I _{FSM}	T _{vi} = 25 °C, 10 ms	750	А
	T _{vi} = 150 °C, 10 ms	600	Α
i²t	T _{vj} = 25 °C, 8,3 10 ms	2800	A²s
	T _{vj} = 150 °C, 8,3 10 ms	1800	A²s
V_{F}	$T_{v_i} = 25^{\circ}C, I_F = 150 A$	max. 1,6	V
V _(TO)	$T_{v_i} = 150^{\circ}C$	max. 0,85	V
r _T	T _{vi} = 150°C	max. 8	mΩ
I_{RD}	$T_{vj} = 25^{\circ}C, V_{RD} = V_{RRM}$	1000	μA
	$T_{vi} = {^{\circ}C}, V_{RD} = V_{RRM} \ge V$		μA
I_{RD}	$T_{vi} = 150$ °C, $V_{RD} = V_{RRM}$	10	mA
	$T_{vj}^{j} = {^{\circ}C}, V_{RD} = V_{RRM} \ge V$		mA
t _{rr}	$T_{vj} = 25^{\circ}C$	10	μs
f_G		2000	Hz
R _{th(j-a)}	isolated ¹⁾	5,7	K/W
()/	chassis ²⁾	2,5	K/W
$R_{th(j-c)}$	total	0,65	K/W
R _{th(c-s)}	total	0,06	K/W
T _{vi}		- 40 + 150	°C
T _{stg}		- 55 + 150	°C
V _{isol}	a.c. 50 60 Hz; r.m.s., 1 s / 1 min.	3000/2500	V~
M _s	to heatsink	5 ± 15 %	Nm
M _t	to terminals	3 ± 15 %	Nm
а			m/s²
w		250	g
Fu		50	Α
Case		G 14	



This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.